中危 google tensorflow 对数据真实性的验证不充分
CVE编号
CVE-2021-41203利用情况
暂无补丁情况
官方补丁披露时间
2021-11-06漏洞描述
TensorFlow is an open source platform for machine learning. In affected versions an attacker can trigger undefined behavior, integer overflows, segfaults and `CHECK`-fail crashes if they can change saved checkpoints from outside of TensorFlow. This is because the checkpoints loading infrastructure is missing validation for invalid file formats. The fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.解决建议
建议您更新当前系统或软件至最新版,完成漏洞的修复。受影响软件情况
# | 类型 | 厂商 | 产品 | 版本 | 影响面 | ||||
1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
运行在以下环境 | |||||||||
应用 | tensorflow | * | Up to (excluding) 2.4.4 | ||||||
运行在以下环境 | |||||||||
应用 | tensorflow | * | From (including) 2.5.0 | Up to (excluding) 2.5.2 | |||||
运行在以下环境 | |||||||||
应用 | tensorflow | * | From (including) 2.6.0 | Up to (excluding) 2.6.1 |
- 攻击路径 本地
- 攻击复杂度 复杂
- 权限要求 普通权限
- 影响范围 越权影响
- EXP成熟度 未验证
- 补丁情况 官方补丁
- 数据保密性 无影响
- 数据完整性 无影响
- 服务器危害 无影响
- 全网数量 N/A
CWE-ID | 漏洞类型 |
CWE-190 | 整数溢出或超界折返 |
CWE-345 | 对数据真实性的验证不充分 |
Exp相关链接

版权声明
本站原创文章转载请注明文章出处及链接,谢谢合作!
评论